Skip to main content

9 posts tagged with "database"

View All Tags

How to Store Vibration Sensor Data

· 19 min read
Anthony Cavin
Data Scientist - ML/AI, Python, TypeScript

Vibration Data Flow Intro

This is a complete guide to storing vibration sensor data efficiently and effectively. We'll cover everything from the basics of vibration data to best practices for managing it as well as setting up a robust and scalable environment to store, query, and replicate vibration sensor data.

Vibration data is typically collected from sensors attached to machinery or equipment to monitor its health and performance. This data can be used to detect anomalies, predict failures, and optimize maintenance schedules.

However, effectively managing vibration data can be challenging due to its high frequency, large volume, and complex nature. To address these challenges, we must implement efficient storage strategies that balance data retention with storage constraints.

After covering the basics of vibration data, we'll explore the best practices for managing this data, including storing both raw and pre-processed metrics to take advantage of their benefits. We'll also look at the differences between traditional time series databases and a time series object store such as ReductStore, which is designed to efficiently handle time series unstructured data, making it an excellent choice for storing high-frequency vibration sensor measurements.

We'll then cover a real-world example of storing vibration sensor data using Python and ReductStore. This example will show you step-by-step how to store raw sensor data, calculate key metrics, and query and retrieve this data for analysis.

Finally, we'll discuss strategies for preventing data loss through volume-based retention policies and automated replication to ensure that valuable information is always available for diagnosis and analysis.

How to Store Vibration Sensor Data | ReductStore vs InfluxDB

· 10 min read
Anthony Cavin
Data Scientist - ML/AI, Python, TypeScript

Benchmark Results

In How to Store Vibration Sensor Data, we discuss the importance of efficiently storing both raw vibration data and pre-processed metrics, and the benefits of using time-series databases such as ReductStore. We explore best practices for setting up a time-series database and implementing data retention policies to effectively manage high-frequency sensor data.

We also see how to store vibration sensor values in 1-second chunks, each packaged as binary data, to optimize the storage process when dealing with high-frequency data such as vibration or acoustic measurements.

In this post, we compare ReductStore and InfluxDB in a real-world benchmark scenario, focusing on their write and read performance for high-frequency sensor data. We show how ReductStore's binary storage provides superior efficiency and scalability over InfluxDB when handling large volumes of unstructured time-series data.

The benchmark was run on an SSD drive, but results may vary depending on hardware configuration and database settings; to explore how it performs on your setup, you can run the benchmark yourself using the Reduct Vibration Example repository on GitHub.

How to Choose the Right MQTT Database

· 15 min read
Anthony Cavin
Data Scientist - ML/AI, Python, TypeScript

Photo by Jan Antonin Kolar

Photo by Jan Antonin Kolar on Unsplash.

Since joining ReductStore's project, I've been exploring alternative solutions to get a better understanding about how the project fits into current echosystem.

To give you some context, we will look at solutions to store data from IoT devices (e.g. sensors, cameras, etc.) that commonly use MQTT to communicate with each other.

MQTT stands for Message Queuing Telemetry Transport and is a lightweight messaging protocol designed to be efficient, reliable, and scalable, making it ideal for collecting and transmitting data from sensors in real time.

Why is this important when choosing a database?

Well, MQTT is format-agnostic, but it works in a specific way. We should therefore be aware of its architecture, how it works, and its limitations to make the right choice. This is what this article is about, we will try to cut through the fog and explore some key factors to consider when selecting the right option.

Let's get started!