Skip to main content

4 posts tagged with "database"

View All Tags

The MinIO alternative for Time-Series Based Data

· 10 min read
Anthony Cavin
Data Scientist - ML/AI, Python, TypeScript

MinIO vs ReductStore

The amount of data generated world-wide is expanding exponentially, and will only increase further in coming years. In fact, over 90% of the data worldwide has been generated in the last two years, and 40% of data in 2020 was generated by machines. Not to mention that 80 to 90 percent of data is unstructured. Not only is timely processing of said data ever more important, the data itself is often time-stamped and must be handled in a time-based structure. Due to the rise of AI/ML, Robotics, IoT, and edge-computing, solutions that can efficiently leverage much cheaper and plentiful unstructured object/blob storage while maintaining the ability to organize, read, and transmit time-series based data from multiple sources and in multiple formats are in great demand. ReductStore and MinIO are two solutions designed to meet this demand.

How to Store Vibration Sensor Data

· 19 min read
Anthony Cavin
Data Scientist - ML/AI, Python, TypeScript

Vibration Data Flow Intro

This is a complete guide to storing vibration sensor data efficiently and effectively. We'll cover everything from the basics of vibration data to best practices for managing it as well as setting up a robust and scalable environment to store, query, and replicate vibration sensor data.

Vibration data is typically collected from sensors attached to machinery or equipment to monitor its health and performance. This data can be used to detect anomalies, predict failures, and optimize maintenance schedules.

However, effectively managing vibration data can be challenging due to its high frequency, large volume, and complex nature. To address these challenges, we must implement efficient storage strategies that balance data retention with storage constraints.

After covering the basics of vibration data, we'll explore the best practices for managing this data, including storing both raw and pre-processed metrics to take advantage of their benefits. We'll also look at the differences between traditional time series databases and a time series object store such as ReductStore, which is designed to efficiently handle time series unstructured data, making it an excellent choice for storing high-frequency vibration sensor measurements.

We'll then cover a real-world example of storing vibration sensor data using Python and ReductStore. This example will show you step-by-step how to store raw sensor data, calculate key metrics, and query and retrieve this data for analysis.

Finally, we'll discuss strategies for preventing data loss through volume-based retention policies and automated replication to ensure that valuable information is always available for diagnosis and analysis.

How to Store Vibration Sensor Data | ReductStore vs InfluxDB

· 10 min read
Anthony Cavin
Data Scientist - ML/AI, Python, TypeScript

Benchmark Results

In How to Store Vibration Sensor Data, we discuss the importance of efficiently storing both raw vibration data and pre-processed metrics, and the benefits of using time-series databases such as ReductStore. We explore best practices for setting up a time-series database and implementing data retention policies to effectively manage high-frequency sensor data.

We also see how to store vibration sensor values in 1-second chunks, each packaged as binary data, to optimize the storage process when dealing with high-frequency data such as vibration or acoustic measurements.

In this post, we compare ReductStore and InfluxDB in a real-world benchmark scenario, focusing on their write and read performance for high-frequency sensor data. We show how ReductStore's binary storage provides superior efficiency and scalability over InfluxDB when handling large volumes of unstructured time-series data.

The benchmark was run on an SSD drive, but results may vary depending on hardware configuration and database settings; to explore how it performs on your setup, you can run the benchmark yourself using the Reduct Vibration Example repository on GitHub.