Skip to main content

How to Find the Best Pre-Trained Models for Image Classification

· 10 min read
Anthony Cavin
Data Scientist - ML/AI, Python, TypeScript

Transfer vs No Transfer Learning

A pre-trained model is a neural network that has already been trained on a large dataset to perform specific tasks, such as image classification or object detection. These models are highly valuable, allowing us to build on previous knowledge rather than starting from scratch.

However, computer vision models often require large datasets of labeled images or videos, which can quickly become challenging to manage, especially when sourced from continuous data streams. ReductStore addresses this need by providing an efficient and reliable time-series object store capable of handling large volumes of high-frequency, unstructured data such as video streams or labeled images. For practical guidance on implementing ReductStore and integrating it with Roboflow to develop high-performing computer vision models, refer to the guide: Computer Vision Made Simple with ReductStore and Roboflow.

Vibration Data Analysis Using Python

· 20 min read
Max Filippov
ML Software Developer - C++, Python, R, Matlab

Interfering waves

Recorded vibrations carry extensive information about the dynamic state of a mechanical system, describing the processes within it in both direct and detailed ways. Vibration signal naturally reflects the mechanical process, often including its very subtle aspects, so its proper analysis may help to monitor not only the system’s dynamic state and operating conditions but also the physical properties and changes in its components, such as wear or faults in bearings or transmission gears, physical defects or breakage of parts, deformations and imbalance, lack of lubrication, etc.

When conducted comprehensively and involves modern ML techniques, vibration analysis approaches the skill of an experienced mechanic’s trained ear, capable of sensing a mechanism's condition through subtle, often indescribable changes in its sound.

However, let’s start with basic vibration analysis methods, specifically by calculating statistics or features that reflect certain well-interpreted properties of the process, each with clear physical meaning. This type of analysis addresses the most common questions about the process, while more subtle features - or those harder to formalize, or just specific for a particular case - may remain unqueried, despite their value for diagnostic and prognostic purposes.

How to Store Vibration Sensor Data

· 16 min read
Anthony Cavin
Data Scientist - ML/AI, Python, TypeScript

Vibration Data Flow Intro

Efficient and effective storage of vibration data is important to a wide range of industries, particularly where accurate and complex predictive maintenance or optimization is required.

This blog post looks at best practices for managing vibration data, starting with storing both raw and pre-processed metrics to take advantage of their unique benefits. Then, we'll explore the differences between traditional time series databases and a time series object storage such as ReductStore.

ReductStore is designed to efficiently handle time series unstructured data, making it an excellent choice for storing high frequency vibration sensor measurements.

We'll also cover strategies for eliminating data loss through volume-based retention policy and automated replication, ensuring that critical information is always available for diagnostics and analysis.