Skip to main content

Computer Vision Made Simple with ReductStore and Roboflow

· 16 min read
Anthony Cavin
Data Scientist - ML/AI, Python, TypeScript

Roboflow and ReductStore

Roboflow and ReductStore. Airplane image by Vivek Doshi on Unsplash and annotated using Roboflow Inference.

Computer vision is transforming industries by automating decision making based on visual data. From facial recognition to autonomous driving, the need for efficient computer vision solutions is growing rapidly. This article explores how Roboflow combined with ReductStore, a time-series object store optimized for managing continuous data streams, can improve computer vision applications. ReductStore is designed to efficiently handle high-frequency time-series data, such as video streams, making it a perfect fit for storing and retrieving large datasets generated by computer vision tasks.

Release v1.11.0: Changing labels and storage engine optimization

· 3 min read
Alexey Timin
Software Engineer - Database, Rust, C++

We are pleased to announce the release of the latest minor version of ReductStore, 1.11.0. ReductStore is a time series database designed for storing and managing large amounts of blob data.

To download the latest released version, please visit our Download Page.

What's New in ReductStore v1.11.0

In this release, we have introduced a new API for changing the labels of existing records and optimized the storage engine to improve database startup and write performance.

How to Store Vibration Sensor Data | ReductStore vs InfluxDB

· 10 min read
Anthony Cavin
Data Scientist - ML/AI, Python, TypeScript

Benchmark Results

In How to Store Vibration Sensor Data, we discuss the importance of efficiently storing both raw vibration data and pre-processed metrics, and the benefits of using time-series databases such as ReductStore. We explore best practices for setting up a time-series database and implementing data retention policies to effectively manage high-frequency sensor data.

We also see how to store vibration sensor values in 1-second chunks, each packaged as binary data, to optimize the storage process when dealing with high-frequency data such as vibration or acoustic measurements.

In this post, we compare ReductStore and InfluxDB in a real-world benchmark scenario, focusing on their write and read performance for high-frequency sensor data. We show how ReductStore's binary storage provides superior efficiency and scalability over InfluxDB when handling large volumes of unstructured time-series data.

The benchmark was run on an SSD drive, but results may vary depending on hardware configuration and database settings; to explore how it performs on your setup, you can run the benchmark yourself using the Reduct Vibration Example repository on GitHub.